183

Plant Breeding Approaches in Developing Stress Tolerance

Hu, X. L., Liu, R. X., Li, Y. H., Wang, W., Tai, F. J., Xue, R. L., & Li, C. H., (2010). Heat shock

protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined

drought and heat stress. Plant Growth Regulation, 60, 225–235.

Hu, Y., Han, Y. T., Zhang, K., Zhao, F. L., Li, Y. J., Zheng, Y., Wang, Y. J., & Wen, Y. Q.,

(2016). Identification and expression analysis of heat shock transcription factors in the wild

Chinese grapevine (Vitis pseudo reticulata). Plant Physiol. Biochem., 99, 1–10.

Jacob, P., Hirt, H., & Bendahmane, A., (2017). The heat-shock protein/chaperone network and

multiple stress resistance. Plant Biotechnol. J., 15(4), 405–414.

Jiang, J., Ma, S., Ye, N., Jiang, M., Cao, J., & Zhang, J., (2017). WRKY transcription factors

in plant responses to stresses. J. Integr. Plant Biol., 59(2), 86–101.

Jiang, M., Jiang, J. J., He, C. M., & Guan, M., (2016). Broccoli plants over-expressing a

cytosolic ascorbate peroxidase gene increase resistance to downy mildew and heat stress.

J. Plant Pathol., 1, 413–420.

Jiang, W. Z., Zhou, H. B., Bi, H. H., Fromm, M., Yang, B., & Weeks, D. P., (2013). Demonstration

of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco,

sorghum and rice. Nucleic Acids Res., 41, e188. doi: 10.1093/nar/gkt780.

Kidokoro, S., Watanabe, K., Ohori, T., Moriwaki, T., Maruyama, K., Mizoi, J., et al., (2015).

Soybean DREB 1/CBF-type transcription factors function in heat and drought as well as

cold stress-responsive gene expression. Plant J., 81(3), 505–518.

Kumar, S. A., Kumari, P. H., Jawahar, G., Prashanth, S., Suravajhala, P., Katam, R., Sivan,

P., et al., (2016). Beyond just being foot soldiers–osmotin like protein (OLP) and chitinase

(Chi11) genes act as sentinels to confront salt, drought, and fungal stress tolerance in

tomato. Environ. Exp. Bot., 132, 53–65.

Li, T., Liu, B., Spalding, M. H., Weeks, D. P., & Yang, B., (2012). High-eciency TALEN-

based gene editing produces disease-resistant rice. Nat. Biotechnol., 30, 390–392. doi:

10.1038/nbt.

Lim, M. Y., Jeong, B. R., Jung, M., & Harn, C. H., (2016). Transgenic tomato plants

expressing strawberry D-galacturonic acid reductase gene display enhanced tolerance to

abiotic stresses. Plant Biotechnol. Rep., 10(2), 105–116.

Lou, D., Wang, H., Liang, G., & Yu, D., (2017). OsSAPK2 confers abscisic acid sensitivity and

tolerance to drought stress in rice. Front. Plant Sci., 8, 993. doi: 10.3389/fpls.2017.00993.

Mantri, N., Patade, V., Penna, S., Ford, R., & Pang, E., (2012). Abiotic stress responses in

plants: Present and future. In: Abiotic Stress Responses in Plants (New York: Springer) (pp.

1–19). doi: 10.1007/978-1-4614-0634-1_1.

Marco, F., Bitrián, M., Carrasco, P., Rajam, M. V., Alcázar, R., & Tiburcio, A. F., (2015).

Genetic engineering strategies for abiotic stress tolerance in plants. In: Plant Biology and

Biotechnology (pp. 579–609). Springer, New Delhi.

Mercado, J. A., Barcelo, M., Pliego, C., Rey, M., Caballero, J. L., MunozBlanco, J., Ruano-

Rosa, D., et al., (2015). Expression of the b-1,3 glucanase gene bgn13,1 from Trichoderma

harzianum in strawberry increases tolerance to crown rot diseases but interferes with plant

growth. Transgenic Res., 24, 979–989.

Mishra, J., Singh, R., & Arora, N. K., (2017). Alleviation of heavy metal stress in plants and

remediation of soil by rhizosphere microorganisms. Front Microbiol., 8, 1706.

Mishra, M., Jalil, S. U., Mishra, R. K., Kumari, S., & Pandey, B. K., (2016). In vitro screening

of guava plantlets transformed with endochitinase gene against Fusarium oxysporum f. sp.

psidii. Czech J. Genet Plant Breed., 52, 6–13.