183
Plant Breeding Approaches in Developing Stress Tolerance
Hu, X. L., Liu, R. X., Li, Y. H., Wang, W., Tai, F. J., Xue, R. L., & Li, C. H., (2010). Heat shock
protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined
drought and heat stress. Plant Growth Regulation, 60, 225–235.
Hu, Y., Han, Y. T., Zhang, K., Zhao, F. L., Li, Y. J., Zheng, Y., Wang, Y. J., & Wen, Y. Q.,
(2016). Identification and expression analysis of heat shock transcription factors in the wild
Chinese grapevine (Vitis pseudo reticulata). Plant Physiol. Biochem., 99, 1–10.
Jacob, P., Hirt, H., & Bendahmane, A., (2017). The heat-shock protein/chaperone network and
multiple stress resistance. Plant Biotechnol. J., 15(4), 405–414.
Jiang, J., Ma, S., Ye, N., Jiang, M., Cao, J., & Zhang, J., (2017). WRKY transcription factors
in plant responses to stresses. J. Integr. Plant Biol., 59(2), 86–101.
Jiang, M., Jiang, J. J., He, C. M., & Guan, M., (2016). Broccoli plants over-expressing a
cytosolic ascorbate peroxidase gene increase resistance to downy mildew and heat stress.
J. Plant Pathol., 1, 413–420.
Jiang, W. Z., Zhou, H. B., Bi, H. H., Fromm, M., Yang, B., & Weeks, D. P., (2013). Demonstration
of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco,
sorghum and rice. Nucleic Acids Res., 41, e188. doi: 10.1093/nar/gkt780.
Kidokoro, S., Watanabe, K., Ohori, T., Moriwaki, T., Maruyama, K., Mizoi, J., et al., (2015).
Soybean DREB 1/CBF-type transcription factors function in heat and drought as well as
cold stress-responsive gene expression. Plant J., 81(3), 505–518.
Kumar, S. A., Kumari, P. H., Jawahar, G., Prashanth, S., Suravajhala, P., Katam, R., Sivan,
P., et al., (2016). Beyond just being foot soldiers–osmotin like protein (OLP) and chitinase
(Chi11) genes act as sentinels to confront salt, drought, and fungal stress tolerance in
tomato. Environ. Exp. Bot., 132, 53–65.
Li, T., Liu, B., Spalding, M. H., Weeks, D. P., & Yang, B., (2012). High-efficiency TALEN-
based gene editing produces disease-resistant rice. Nat. Biotechnol., 30, 390–392. doi:
10.1038/nbt.
Lim, M. Y., Jeong, B. R., Jung, M., & Harn, C. H., (2016). Transgenic tomato plants
expressing strawberry D-galacturonic acid reductase gene display enhanced tolerance to
abiotic stresses. Plant Biotechnol. Rep., 10(2), 105–116.
Lou, D., Wang, H., Liang, G., & Yu, D., (2017). OsSAPK2 confers abscisic acid sensitivity and
tolerance to drought stress in rice. Front. Plant Sci., 8, 993. doi: 10.3389/fpls.2017.00993.
Mantri, N., Patade, V., Penna, S., Ford, R., & Pang, E., (2012). Abiotic stress responses in
plants: Present and future. In: Abiotic Stress Responses in Plants (New York: Springer) (pp.
1–19). doi: 10.1007/978-1-4614-0634-1_1.
Marco, F., Bitrián, M., Carrasco, P., Rajam, M. V., Alcázar, R., & Tiburcio, A. F., (2015).
Genetic engineering strategies for abiotic stress tolerance in plants. In: Plant Biology and
Biotechnology (pp. 579–609). Springer, New Delhi.
Mercado, J. A., Barcelo, M., Pliego, C., Rey, M., Caballero, J. L., MunozBlanco, J., Ruano-
Rosa, D., et al., (2015). Expression of the b-1,3 glucanase gene bgn13,1 from Trichoderma
harzianum in strawberry increases tolerance to crown rot diseases but interferes with plant
growth. Transgenic Res., 24, 979–989.
Mishra, J., Singh, R., & Arora, N. K., (2017). Alleviation of heavy metal stress in plants and
remediation of soil by rhizosphere microorganisms. Front Microbiol., 8, 1706.
Mishra, M., Jalil, S. U., Mishra, R. K., Kumari, S., & Pandey, B. K., (2016). In vitro screening
of guava plantlets transformed with endochitinase gene against Fusarium oxysporum f. sp.
psidii. Czech J. Genet Plant Breed., 52, 6–13.